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FOREWORD 

The BESRL Work Unit, "Computerized Models for the Simulation of Policies and Oper- 
ations of the Personnel Subsystem—SIMPO-I," is conducted by the Statistical Research 
and Analysis Division of BESRL. The Task constitutes the initial undertaking of an oper- 
ations research requirement described in the Army Master Study Program under the title, 
"A Simulation Model of Personnel Operations (SIMPO) " and is Project 2Q055101M711, 
"Army Operations and Intelligence Analysis," under the auspices of the Army Study 
Advisory Committee. Sub-Work Units include: a) Operational Analysis of Personnel Sub- 
systems; b) Cataloging and Integration of Existing Manpower Models; c) Development of 
Measures of System Effectiveness; d) Development of Modeling Techniques; e) Design 
and Programming of SIMPO-I; f) Application and Evaluation of Computerized Models; and 
g) Problem Oriented Language for Management. 

The present publication reports on the development of a pseudo-random number gen- 
erator which would provide random numbers for application in SIMPO-I entity models, and 
evaluation of the generator product through a series of statistical tests devised for the 
purpose. The research was conducted under the technical guidance of Richard C.Sorenson, 
then SIMPO Task Leader. Dr. Stanley Mulaik provided constructive suggestions on text 
content and derivation of the statistical tests applied. The tests have wide applicability 
in evaluating random number generation for computer systems. 

J. E. UHLANER, Director 
U. S. Army Behavioral Science 
Research Laboratory 
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EVALUATION OF A MULTIPLICATIVE GENERATOR OF PSEUDO-RANDOM NUMBERS 

BRIEF 

Requirement: 

To develop a pseudo-random number generator which would be able to rapidly supply 
the SIMPO-I entity models with numbers meeting essential tests for random qualities. 

Research Products: 

A pseudo-random number generator was developed and tested. Repeated multiplies- 
tion of a starting number by a carefully chosen constant produced a series of 47-bit 
binary numbers which were reduced by the modulus of the system (2*7). To increase 
randomness, the twelve low order bits were not used. The resulting numbers were con- 
verted to base 10 and assigned a decimal point to the left of the first digit. Tests were 
made on groups of ten numbers to evaluate their conformation to expected distributions. 
The generator was generally acceptable. 

Perhaps equally important with the development of the generator, the work done 
resulted in a compilation of statistical tests which have wider application for evaluating 
generators used on other computer systems. The tests are described, and essential 
mathematical formulations are presented. 

Utilization of the Research Products: 

The multiplicative generator of pseudo-random numbers described here is in use st 
the BESRL computer installation. Tests used in evaluating this generator will be useful for 
evaluating the generators used by other computing centers. 
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EVALUATION OF A MULTIPLICATIVE GENERATOR OF PSEUDO-RANDOM NUMBERS 

Pseudo-random numbers generated by computer routines are used widely 
by operations research specialists and other scientists In several major 
problem areas. 

One use Is the generation of experimental samples In which each ran* 
dom number represents a variable for one of the entitles In the sample. 
Personnel In the Army have been simulated, for example, by using a se- 
quence of eleven random numbers to represent test scores for each of the 
eleven tests In the Army Classification Battery. The scores can be given 
desired distributions and Interrelationship by appropriate transformation, 
a characteristic particularly Important when evaluating a policy change 
which affects these aspects of the sample. 

Mathematical games of strategy are another important application- 
one that Is receiving increasing attention. A model of the system is 
developed which Includes significant variables and appropriate inter- 
actions.  By varying the relative weights and interactions of the vari- 
ables, the behavior of the system under various strategies and policies 
is simulated, and the system Is evaluated by noting the effect on crite- 
rion measures.  Random numbers are used to represent the different vari- 
ables. 

Solution of certain mathematical problems for which a probabilistic 
model may be formulated Is possible by using random numbers in appropriate 
sampling techniques. These problems Include evaluating Integrals, solving 
ordinary and partial differential equations, and working with difficult 
systems of linear constraints for which only a partial or "point" solution 
is desired. 

The applications above are relevant to the simulation models devel- 
oped in the Behavioral Science Research Laboratory Work Unit, "Simulation 
of Personnel Policies and Operations, SIMPO-I." The SIMPO-I Quality 
Input Model (1) and the SIMPO-I General Entity Simulator1-' both make 
extensive use of random numbers.  The Quality Input Model has used over 
200,000 such numbers in a single simulation study.  Thus, an efficient 
random number generator is an essential tool of the SEMPO-I models. 

^The product of U. S. Army Research Office contract number DA HC I969- 
C-0001, with C0NSAD Research Corporation, monitored by SIMPO-I per- 
sonnel.  BESRL report is in preparation. 



BACKGROUND 

A random number results from an Independent trial from an Infinite 
population of numbers whose distribution corresponds to some theoretical 
probability distribution function. That Is, each number has an expected 
probable occurrence, and the outcome of each trial Is a function solely 
of the overall distribution and is not affected by previous trials. The 
property of Independence, which Is of special significance, means that 
there are no predictable patterns within sequences or samples or random 
numbers other than those based on the laws of chance and on the theoret- 
ical probability distribution from which the numbers were drawn. 

A random number generator Is a method of generating numbers under 
the constraints of probability laws. These probability laws govern the 
sequence of numbers generated and describe the statistical properties of 
the sequence and the relationship between numbers In the sequence. 
Although devices to generate "pure" random numbers exist and have been 
used, the term random number generator normally refers to a method of 
obtaining pseudo-random numbers based on a simple mathematical operation 
that produce? sequences completely determined by the parameters and 
initial values. Devices which generate pseudo-random numbers are normally 
used as the source of random numbers for several reasons. First, it is 
frequently desirable to have the capability oi repeating exactly the 
sequence used in a previous problem, an impossible (or prohibitively 
expensive) feat with a random device. In addition, not only do efficient 
pseudo-random number generators exist but. If parameters are properly 
chosen, these generators produce numbers with almost completely accept- 
able properties. A generator must satisfy the following criteria to be 
acceptable as a source of random numbers: 

1. Sequences produced must show satisfactory statistical properties. 

2. Cycle length must be sufficient to insure that no more than a 
small portion of the total sequence will be necessary for a single appli- 
cation. 

3. Numbers must be generated and returned quickly enough that 
problems requiring many numbers can be solved efficiently. 

4. Storage requirements must not be excessive relative to total 
capacity of the computer. 

Random number generators typically utilize a simple repeatable 
mathematical operation in which the entire sequence is perfectly deter- 
mined from initial conditions.  By far the most common of these have 
been of the linear congruential form 

x - c^ xo + (ji (MOD M) 

where x  is the random number output, c a constant multiplier, x the 

starting value, \j,  a constant, M the modulus of the system, and J the 

- 2 - 



position of the number In the  sequence.    Such generators are generally 
referred   to as multiplicative  or'power residue   if pi  ■ 0,   and as mixed   if 
tx  ft 0.    The double congruential  generator may use a second  generator to 
scramble   the numbers output by the   first or the  output  of  two multiplica- 
tive generators may be added. 

In spite of the considerable effort that  has been devoted to devel- 
oping and  testing sophisticated methods of generating   random numbers by 
using modified forms of  the basic linear congruential  methods, most of 
the  literature concerned  with number theory (as  opposed to  that  concerned 
with specific generators)   indicates  that  the multiplicative is as good  as 
any other  (and usually quicker).     It produces   sequences with good statis- 
tical properties if the  parameters are properly  selected and if the com- 
puter word length is sufficiently large.    For  example,   Coveyou and 
MacPherson (2)  conclude,    "There  is  at present no method cf  generating 
pseudo-uniform sequences  better  than the simple multiplicative congruence 
method with a carefully  chosen multiplier." 

On the other hand,  Marsaglia in I968 (3)  cautioned that any multipli- 
cative generator has a defect which makes it unsuitable for certain Monte 
Carlo problems:    Points whose  coordinates are  sequences of numbers gen- 
erated by a single pseudo-random number generator fall  in a relatively 
small number of parallel   hyperplanes of the unit  n-cube.    On the basis of 
this  fact,   no  single generator,  whether multiplicative or congruential, 
should be used to generate more than one coordinate of a set of coordi- 
nates at  a time;  and when several  generators are used   simultaneously, 
they  should be tested  for  independence. 

The most   important   factor   limiting the potential   statistical prop- 
erties of  the   sequences  output  by any generator  of the  congruential form 
is  the word  length of the  computer.     The high order,   or most  significant, 
bits of a computer word  have cycles  longer than  those  of the low order 
bits.    Theoretically,  bits with longer cycles display  better random prop- 
erties.     Therefore,   since a longer word has more  bits   than a shorter word, 
and   since  the high order bits of the longer word have   longer cycles than 
those of  the  shorter word,   it  follows that longer words produce  sequences 
that display better random properties than do the shorter ones.    Both 
Coveyou and MacPherson strongly support this idea. 

The multiplier,   the  other  factor affecting   statistical   performance, 
can affect the statistical  properties greatly,   particularly for generators 
of relatively short word   length.    Coveyou and MacPherson (2)  suggest  the 
following criteria in the  selection of multipliers for uniform random 
number generators of the  congruential type: 

1. The multiplier c should not be close to a simple rational multiple 
of M (the modulus of the system); if it is, the basic congruence shows that 
appreciable serial  correlation will  result. 

2. The multiplier c  should not be close to a simple rational multiple 
of the square root of M;   even though the choice may produce very small 
correlation between adjacent pairs,   serious difficulties result  in the 
iriplet distributio... 
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5.     The multiplier c  should  not be chosen with a small number of I's 
in the binary representation to  facilitate  "shift and  add" techniques;   if 
the number of I's  is  small  enough  to do any good,   "small" solutions of 
the basic congruence will  again  lead to trouble. 

4. Above all,   the multiplier  c must be adequately  large. 

5. The choice of multiplier must be made more carefully for com- 
puters  of short word length;   it may be necessary to use multiple preci- 
sion arithmetic for computers with  short word  length such as the IBM 360^ 
in order  to ensure unquestionably good statistical   performance. 

EVALUATION OF SEQUENCES OF PSEUDO-RANDOM NUMBERS 

It was noted that  pseudo-random numbers are not  independent in the 
same way as  random numbers.     Obviously,  any process  in which the entire 
sequence  is precisely determined  by the parameters and  the  starting point 
does not  produce independent numbers.    It  is not  essential,   however,   that 
a generator output  sequences of numbers which are  literally independent; 
it  is   sufficient that  the numbers be independent   to  the degree that  a 
sequence  or  sequences do not have  properties which adversely affect  the 
results  of  the application for which the numbers are used.     In this  sense, 
a generator must  satisfy the  "Independence property" and  only in this 
sense does  the "independence property" have any meaning when applied  to 
pseudo-random numbers.     To be  an acceptable source of random numbers, 
therefore,   a generator must   satisfy two criteria: 

1.     The  generator must  output numbers which  fit  the desired distri- 
bution  (in this case,   the uniform distribution).     This  criterion is easily 
met.     In  fact, with properly selected parameters,   all   generators of the 
power residue type produce numbers which are exactly uniform over the 
unit   interval when the  entire  sequence is considered.     In a given appli- 
cation,   however,  only sub-sequences normally are used.     More important, 
if every  sequence were  exactly uniform,  the result would  not be random 
numbers.     Consequently,   the  concern is with various  sub-sequences, which 
must  be  tested to Insure  that   they are sufficiently uniform to satisfy 
the uniformity criterion yet  not   so uniform that  they are not random. 
In addition,   the length of  the  sub-sequences on which the  tests are con- 
ducted must  be consistent with the  intended use,   and  the  intervals 
(against which the distribution  is   tested)  should  be consistent with the 
required  degree of  precision. 

S-*" Commercial  designations  are  used  only for  clarification of the proce- 
dures  described.     Their use does  not constifute  indorsement of the 
product  either by the Army or  by  the U.  S.   Army  Behavioral  Science 
Research  Laboratory. 
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2,     The  generator must  yield   sequences which do not  have undesirable 
patterns  or waves.    The tests  for undesirable patterns  or waves within 
sequences  Is  even more closely tied  to  the application for which the 
numbers are  going to be used.     Some  applications,   for  example,  may be 
affected  by the distribution of sets  of n numbers where n is  relatively 
small,  whereas other applications may depend on the  sum of a  set or the 
maximum number  from a set.     The  tests  used  to evaluate a  specific gen- 
erator must  be designed  in consideration of the  intended  use   in order to 
Insure  satisfactory statistical  properties and reliable results. 

THE NEW GENERATOR DEVELOPED BY BESRL 

The generator available when  the present  study was undertaken used a 
po. jr residue or multiplicative method   in a single computer word  of 24 
bits.     Statistical  tests made on samples  of numbers generated  by this 
program indicated  that  the  samples  had  unacceptable properties.     Because 
of  the results of these tests and  because of theoretical   considerations 
favoring a generator based  on a longer word length,  decision was made to 
develop a generator which used double  precision arithmetic  (48-bit  com- 
puter words) . 

The new generator developed by BESRL is a power residue or multipli- 
cative generator, the simplest of the many generators based on the linear 
congruential  method.     It has   the form 

x     - cJ   x     (MOD M). j o  v 

The j   term of the sequence (beginning with x ) is equal to the J  power 

of c times x , reduced modulo M, where x is the starting value, c is a 

constant multiplier, and M is the modulus of the system. 

Double precision arithmetic is used in multiplication.  On the Control 
Data 3500-^ computer, this means that instead of the usual 24 bits, 46 bits 
are used.  Since the cycle length of a bit in a given position increases 
from low to high order bits, the 24 most significant bits using 48-bit 
words are theoretically more random than any of the bits when a 24-bit word 
is used.  The increase from 24 to 48 bits is probably the most important 
difference between the new generator and the old.  Coveyou and MacPherson, 
who (as mentioned previously) strongly emphasize the importance of word 
length as a determinate of statistical performance, are very skeptical of 
any generator based on a word length of less than 55 bits (2). 

47 The new generator has a modulus of 2  , which equals the word size 
(the 48th bit is a sign bit).  A modulus equivalent to the word size avoids 
the necessity of division in both reducing MOD M (only the low 47 bits are 

See footnote 2 on page 4. 
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kept) and conversion to the unit interval (the decimal point is merely 
assigned to the left of the number). A modulus equal to the word size 
is used for most power residue generators since it also maximizes the 
cycle length. 

Each binary number is evaluated (converted to the unit interval) 
based on the 55 high order bits and disregarding the 12 low order bits. 
This method avoids both the bias caused by restriction on the final 
octal position (last 3 bits) and any potential bias resulting from the 
relatively short cycles of the 12 low order bits. 

4«5 ^«5 10 
The cycle length is 2 ^ with each of 2^y numbers appearing 2  times 

Developing generators with known adequate cycle length has not been a 
21    4*5 

problem; however, the increase from 2 ' to 2  means that even for appli- 
cations requiring many numbers only a tiny portion of the total sequence 
will be used. 

The computer program has been set up to generate as many independent 
sequences as desired.  Each sequence uses as its multiplier a constant 
plus i where 1 equals the number of the sequence times another constant. 
In other words, the difference between the multipliers for each pair of 
adjacent sequences is a constant. 

On the present BESRL computer, a random floating point number is 
generated and returned in 120 \i.  seconds (i.e., approximately 8550 
numbers can be generated per second). 

Any odd number up to 16 octal digits can be used as the starting 
value (x ).  Because of the binary representation of numbers in the com- 

puter, odd starting numbers give a longer sequence of random numbers 
before repeating than even starting numbers--sequence length of 
45 44 

2   as opposed to 2 

TESTS USED TO EVALUATE THE BESRL GENERATOR 

Tests used to evaluate the generator include 1) standard tests de- 
signed to detect the obviously unsaMsfactory generator, 2) tests de- 
veloped in conjunction with a previous BESRL project to evaluate the 
possibility of undesirable waves or patterns within sub-sequences, and 
5) additional tests designed in consideration of the use made of random 
numbers by BESRL in evaluating possible relationships between several 
independent sequences.  All tests were conducted on sets of ten number 
and the statistics accumulated over the entire sample.  For some tests, 
the choice represented only a programming convenience and had no effect 
on the numbers tested.  For other tests, however, the ten-number set 
limitation meant that certain numbers were omitted.  For example, the 
triplet test considtrs the first three sets of three from each set of 
ten, and the test for the minimum of seven considers the last seven of 
each set of ten. 

6 - 
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In applying these tests, each sequence was treated as If It were 
composed of numbers resulting from a series of Independent trialc from 
an infinite population of numbers whose distribution conformed to the 
uniform distribution.  In other words, it was assumed that the numbers 
met the uniform distribution requirement of random numbers.  The numbers 
were then tested to determine if their characteristics were consistent 
with what would be expected for random numbers. All tests involved com- 
paring a distribution of actual events with the theoretical distribution 
implied by the uniform distribution and independence assumptions. The 
standard chi square test was used as a basis of evaluation. 

The following steps were used to evaluate the actual distribution 
of events for all tests. 

1. Set up intervals associated with equal probabilities of occur- 
rence.  (The theoretical distribution is easy to calculate since each 
interval then has equal expected observations.) 

2. Observe a series of events. 

5.  Count the number of events falling in each interval. 

4.  Use a chi square test to determine whether the observed number 
of events falling in each interval accords with the number theoretically 
expected to fall in those intervals under the assumption uf independence. 

The tests and a brief explanation of each are listed below: 

Tests of Uniformity 

These were the most straightforward tests conducted.  The random 
numbers generated were treated as samples of a random variable. The 
hypothesis tested was that the random variable was uniformly distributed 
over the unit interval between zero and one. 

Test for Uniformity of Singles (Test 1^).  The unit interval between 
0 and +1 was divided into 100 equal sub-intervals.  For each of the sub- 
intervals, a count was obtained of the number of generated random numbers 
falling in that interval.  The chi square test involved testing whether 
these observed numbers of cases falling in the sub-interval deviated 
significantly from the numbers of cases theoretically expected to fall in 
the sub-intervals on the average under the hypothesis that the random 
numbers generated behave as a random sample of a uniformly distributed 
random variable. 

Test for Uniformity of Pairs (Teat 2).  The unit square was divided 
by a 10 x 10 grid into 100 equal square subdivisions.  Each pair (u., u  -x 

of random numbers generated was then assigned to one of the square sub- 
divisions according to its coordinates.  The numbers of random numbers 
falling in the respective square subdivisions were compared with the 
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corresponding numbers of cases theoretically expected to fall in these 
subdivisions under the hypothesis that the successive numbers generated 
were samples from tvo independent and uniformly distributed random 
variables. 

Test for Uniformity of Triples (Test ^). The unit cube was divided 
by a three-dimensional grid into 1000 ■ 10 x 10 x 10 cubic subdivisions. 
Each triple (u., u4+.i> UI+P^ 0^ random numbers generated was assigned to 

one of the cubic subdivisions according to its coordinates.  The observed 
numbers of cases falling in these sub-intervals were compared with the 
theoretically expected numbers of cases that would fall in the subdivisions 
under the hypothesis that the successive numbers generated were samples 
of three independent uniformly distributed random variables. 

Maximum Number in a Subset 

Let X be a continuous random variable uniformly distributed on the 
unit interval (0, 1).  Then P(X ^ x) «» x.  Consider a random sample of n 
observations of X.  Then the probability that a sample will contain no 
value greater than x   is 0 max 

r n (x ^ x )i - 45i (p (x s: x )) L   ' '    v max'J i*L     v     v max'7 
n x max 

Consider now the random variable Y " X   where X   is the maximum 
max       max 

value in a sample of n observations of the random variable X.  Then 

P [Y ^ y ] - y" 

describes a cumulative distribution function for Y.     Since 0 ^  Y ^ 1  for 
all  Y,   the probability  can be considered  that  an observed value of Y will 
fall  in the  sub-interval  (a,b)   of the unit  interval   to be 

P [a <  Y ^ b]     =    P [Y ^ b]     -     P [ Y ^  a]     - bn -  a". 

In N observations of the random variable Y = X   , (b  - a )N cases 
max' v       ' 

of Y on the average would be expected to fall in the interval (a,b). 

Since the above development crucially depends on the independence of 
the observations of the random variable X, the probability distribution 
function of the maximum value in a sample of n observations may be used 
as a basis for testing the independence and uniformity properties of a 
random number generator.  In the present study, the unit interval was 
divided into sub-intervals associated with equal probabilities of con- 
taining specified values of Y » X   .  Intervals associated with equal 0 r max 
probabilities were chosen to facilitate the accuracy of the chi square 
tests of the random number generator.  The following tests were performed; 
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Maximum of Two (Test 4). The unit interval was divided into 25 sub- 
intervals associated with equal probabilities of occurrence, and the 
maximum value of a pair of random numbers u., u -. was assigned to the 

respective sub-Interval.  The resulting number of observations for the 
chl square test was equal to one-half the sample size. 

Maximum of Five (Test ^). The unit interval was divided into 20 
intervals. The maximum value of the observed sequence u., ...., u. 

was assigned to the appropriate sub-interval. The number of observations 
was equal to one-fifth the sample size. 

Maximum of Ten (Test 6).    The unit interval was divided into 10 sub- 
intervals. The maximum value of the sequence u., •••• u.  was assigned 

1       i^V 
to the appropriate sub-interval. The number of observations was equal to 
one-tenth the sample size. 

Minimum Number in a Subset of n Numbers 

By an argument analogous to that developed in connection with the 
probability of occurrence of maximum values in a sequence of n observa- 
tions of a uniformly distributed random variable, the probabilities 
associated with the minimum values for such sequences can be developed. 
Specifically, let X ,  be the minimum value of n Independent observa- 

tions of a uniformly distributed random variable X.  Then the random 
variable Z - X ^  is distributed such that min 

P [2 > *]  -  P IK^ > xmln]  - (1 - x^)" 

"  P [Z ^  - 1 - (1 - xmln)
n. 

From this distribution function the probability that an observed value of 
Z falls in a specified sub-interval (a,b) on the unit Interval (0,1) can 
be computed by 

P [a < Z ^ b]  =  P [Y s b] - P [Y £ a]  =  (1 - a)a - (1 - b)n 

The following tests for minimums were made on the sample of random 
numbers generated.  These tests were carried out fully in analogy to the 
tests for maximums: 

Minimum of Three (Test ]_).     Each of the first three sets of three 
numbers from each set of ten was considered and the tenth number omitted, 
with the resulting number of observations equal to one-third th-_ sample 
size. 

Minimum of First Three (Test 8). Only the first three numbers from 
each set of ten were considered, resulting in a total number of observa- 
tions equal to one-tenth of the sample. 



Minimum of Seven (Test £).  Identical to Test 8, except that the 
first seven numbers In each set of ten were considered. 

Minimum of Ten (Test 10).  Each set of ten numbers was considered. 

Sum of n Numbers 

Let S be the statistic S  ■X-+,,,,X, the sum of n Independent 
random variables X.. , ..., X uniformly distributed over the unit Interval 

(0,1).  According to Parzen (4), 

*„;*) ■ >■ [8n i S] - i, (8» - j^r  (S-l)- + j^r  (S-2)n 

lfOs:S^n;Prs    <S]-0     lff<0;andP[S    ^S]«l 
'    n        ■J L  n 

If S > n.  The series Is summed until a term within the parentheses, 
-i        _ 

7 . '> 141 (S-J) , Is encountered such that j > n or J > S. This V n-j;. j . 

formula can ba used to determine the probability of encountering sums of 
Independent uniformly distributed random variables In any sub-Interval 
(a,b) of the Interval (0,n) by P [a < S ^ b]  - F (b) - F (a). 

Since the above development again depends on the Independence and 
uniformity of Identically distributed random variables, It can form a 
basis for testing a random number generator.  By observing the relative 
frequencies with which certain sub-Intervals of the interval (0,n) con- 
tain observed sums of n sequentially generated uniformly distributed 
random numbers, we can determine by a chl square test whether these 
frequencies accord with their theoretically determined expected values 
under the assumptions of independence and uniformity.  The following 
sums tests were used: 

Sum of Two (Test 11).  Each pair was considered, resulting in a 
total number of observations equal to one half the sample size. 

Sum of Four (Test 12). The first four from each set of five numbers 
were considered.  (The fifth and tenth numbers in each set of ten were 
omitted.)  The total number of observations was equal to one-fifth of 
the sample size. 

Sum of Seven (Test 13). The first seven numbers from each set of 
ten were included, resulting In a total number of observations equal to 
one-tenth of the sample. 

Sum of Ten (Test 14).  This test was identical to Test l^ except 
that ten 'numbers were used. 

- 10 - 
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Fourth Largest of Five (Test 13) 

Let X-, X-, ..., X be five Independent random variables uniformly 

distributed on the unit interval (0,1).  Let G be the statistic G - (the 
fourth largest of X^, X , .... X ).  From Rao (5), the cumulative distri- 

bution function for exactly three numbers larger than g and one number 
smaller than g in a group of 5 numbers from 5 independent trials is 

Fr(g)  - I0g2 - 20g5  + I5g4 - 4g5 
Gv 

The unit interval may be divided into sub-intervals each having equal 
probability of containing sample values of G. The probability that G 
will fall in the interval (a,b) is given by 

P [a < G * b]  - FG(b) - FG(a) 

This fact may be used to test the independence and uniformity properties 
of a uniform random number generator.  In the present study, the unit 
interval was divided into 10 intervals each having equal probabilities of 
containing sample values of G.  A chi square test was run on the observed 
frequencies in these intervals based on the first five random numbers of 
each sequence of 10 random numbers generated.  The total number of cases 
observed was equal to one-tenth the number of random numbers generated 
in the total sample. 

Each set of ten sequentially generated random numbers was ordered 
from smallest to largest and the difference between each adjacent pair 
was calculated, including the difference between the smallest number and 
zero.  Assignment was made to the interval containing the value of the 
maximum differences.  The total number of events was equal to one-tenth 
of the sample. 

Maximum Difference for a Set of Order Statistics 

Let xn , ..... x be a set of joint observations on a set of random 
1'    '  n 

variables x, , .... x uniformly distributed on the unit interval.  Con- 
l'    '  n 

sider that the n observations are then rank ordered from smallest to 
largest.  By X,,*, denote the random variable "smallest of n numbers"; 

by X,pv, denote the random variable "next to smallest of n numbers"; and 

so on, to X,  ,%, "the next to largest'" and X, N "the largest of n (n-lj' (n; 
numbers".  Now, define the statistic V ■ (U,, U_, .... U ) where 1 v 1'  2'    '  n' 
{V1,  U2, ..., Un) corresponds to (X^, (X^ - X^), ..., (X^ - X^^j) 

The cumulative distribution function 
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F(v)  = P[V ^ v]  =  E   (-l)k (") (1 - KV)n 

k=0 

(where m is an integer such that —r- < V ^ —) gives the probability of 

obtaining a maximum difference of order statistics no larger than V. 

Maximum Difference for Each Ordered Set of 10 Numbers (Test 16). 
Each set of ten sequentially generated random numbers was ordered from 
smallest to largest and the difference between each adjacent pair was 
calculated, including the difference between the smallest number and 
zero.  Assignment was made to the interval containing the value of the 
maximum difference. The total number of events was equal to one-tenth 
of the sample. 

Autocorrelation between the jth and jth plus ten numbers (Test 17). 
The correlation coefficient between the jth and jth plus ten numbers was 
calculated for the entire sample using the formula 

/N-10 N-iO   A //N-10 _   N-10   A 

where r represents the correlation coefficient, and N = total sample size. 
This test was evaluated by considering the probability that a set of n 
pairs would have an r as large or as small as the observed if the corre- 
lation were in fact equal to zero.  Although there was only one event per 
sample, we were still able to compare an actual distribution to a theoret- 
ical distribution when evaluating the 200 samples of 1000. 

Runs Up and Down (Test 18).  The number and lengths of runs were 
counted and assigned to the corresponding interval, forming a frequency 
distribution.  The theoretical distribution was determined by the formula 

E^V (P + 5): 
where p represents the length of the run, r represents the number of runs 

of length p, n the sample size, and E(r ) the expected number of such runs, 

Runs Above and Below the Mean (Test 19). The number and length of 
runs above and below the mean were counted and an assignment was made to 
the corresponding interval in the domain of lengths of runs.  The expected 
value of the number of runs of length p was given as 

E(r )< (" - E-± ^ 
P      2P+1 

A chi square test was used to confirm the reasonableness of actual results, 
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RESULTS OF STATISTICAL TESTS 

Output of One Generator 

The results of the Initial tests conducted on the first sequence are 
summarized In Table 1. These te&s, conducted on sets of ten as described 
In the preceding section, Involved a total sequence of 200,000 consecutive 
numbers (beginning with an Initial value of x »1). For each test, there 

were ten chl square values based on the distributions resulting from 2000 
sets of ten numbers and an overall chl square value based on the other ten 
statistics.  The column headings are as follows: 

a. Test (Indicates the name and number of the test as listed in the 
section describing the statistical tests). 

b. Number of intervals used. 

c. Number of sample points (for each sub-sequence of 20,000 numbers). 

d. Expected observations per Interval [(c) -r (d)]. 

e. Minimum chl square value (expressed as a standard deviation*^) 
of the ten values based on the distributions resulting from 2000 sets of 
ten numbers. 

f. Probability that the smallest statistic of ten independent values 
would be no smaller than the minimum. 

g. Maximum chi square value (expressed as a standard deviation*^) 
of the ten values based on the distributions resulting from 2000 sets of 
ten numbers. 

h.  Probability that the largest of ten independent values would be 
no larger than the maximum value observed. 

1.  Overall chi square statistic (expressed as a standard deviation^) 
based on the ten chi square values. 

j.  Probability of a chi square statistic as large as that expressed 
by (i). 

^McNemar, Quinn.  Psychological Statistics, p. 197«  For n's larger than 

50, the expression v^T ~ \^n  ~   ^ will have a sampling distribution 
which will follow very closely the unit normal curve. 



In evaluating the chl square statistics, both the low and high 
values are of Interest.  Excessively low values Imply that the distribu- 
tion for a particular test Is not sufficiently random—that It Is too 
uniform, while excessively high values Imply that the distribution Is 
not s .ficiently uniform.  In addition to the Individual chl square 
values, the distribution of chl square values for a particular test, 
which the probabilities In (f) and (h) are designed to evaluate. Is of 
concern. The tests which fall at the 5 percent and 95 percent confi- 
dence levels are circled In Table 1.  Overall, the performance was 
reasonably satisfactory.  If the tests were Independent (which they are 
not), there would be expected 10 percent (5 percent at each tall) or 
approximately 5 failures, whereas actually there were eight failures. 

The minimum chl square value out of ten values based on the distri- 
bution of the sums of four (Test 12, column e) Is somewhat disappointing. 
The expectation that 10 tests would yield no chl square statistic smaller 
than that observed ( .59 standard deviation below the mean) would be 1 
percent.  In other words, 99 percent of the time at least one distribu- 
tion out of ten using 100 degrees of freedom would have a smaller chl 
square value than 95«l«  Similarly, the test for the maximum of five 
(Test 5> column g) was not completely satisfactory.  Only 1 percent of 
the time would the largest of ten chl square values be only .56 standard 
deviations above the mean. 

The results of the tests conducted on the first eight sequences are 
summarized In Table 2.  These tests were not designed to test Individual 
chl square values for each sequence and test, but rather to evaluate the 
distribution of chl square values to determine If It conformed to the 
theoretical distribution. 

For each sequence, the full complement of tests previously described 
was conducted on the first 200,000 numbers, each test being applied to 
100 sets of ten (I.e., 200 samples of lOOO).  This yielded 200 chi square 
statistics for each sequence and test.  These statistics were then arrayed 
in a frequency distribution of twelve Intervals based on both the degrees 
of freedom for the particular test and Table A-6b, "Percentlles of the 
X8/df Distributions", in Dixon and Massey (6). 

Two intervals at each end had an expected observation of 5 percent 
(10) and the eight Intervals in the middle had an expected observation 
of 10 percent (20).  Finally, a chl square test was made on each of I52 
distributions (8 sequences x 19 tests); Table 2 indicates the chi square 
value divided by degree of freedom (11) for each sequence and test. 

Table 2 has eight columns, each representing a sequence.  The 
sequence number and multiplier (c) head each column.  At the left are 
the name of the test and, where appropriate, the number of intervals and 
total observations per sample of 1000.  In addition, the expected observa- 
tions per interval have been indicated for those tests which have an equal 
number of expected observations per interval.  Within the table are the 
chi square divided by degrees of freedom values, as described above, 
corresponding to each seqience. 
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Table 1 

RESULTS OF   INITIAL TESTS  ON FIRST  SEQUENCE OF SETS  OF TEN 

(a) (b) (c) (d) (e) (f) (g) (h) (1) (J) 

Numbers      (1) 100 20,000 200 -I.54 •55 .92 .14 -.54 .63 

Pairs        (2) 100 10,000 100 -•55 .05 1.00 .18 .84 .20 

Triples      (5) 1000 6,000 6 -I.95 .77 1.01 .18 -1.82 •97 

Max-two      (4) 100 10,000 100 -.76 .08 1.88 •74 1.65 .05 

Max-five     (5) 100 4,000 40 -1.45 .47 (^ .01 -•75 •77 

Max-ten      (6) 100 2,000 20 -1.81 .70 1.55 • 58 -.61 •75 

Min-three    (7) 100 6,000 60 -2.50 .94 1.86 .11 -.50 .62 

Min-first    ,o\ 
three        (8) 100 2,000 20 -.91 .14 1.59 .56 .48 .52 

Min-last seven(9) 100 2,000 20 -1.46 .47 1.48 .49 -.51 .70 

Min-ten     (lo) 100 2,000 20 -I.87 •75 1.55 .54 .88 .19 

Sum of Two  (11) 100 10,000 100 -1.40 .45 1.84 .72 -.81 •79 

Sum of Four (12) 100 4,000 40 (^9) .01 1.17 .28 I.89 • 05 

Sum of Seven (13) 100 2,000 20 -I.94 • 77 1.75 .65 -.49 .69 

Sum of Ten   (14) 100 2,000 20 -I.78 .'8 1.08 .22 -.15 .56 

Fourth Largest 
of Five     (15) 

100 2,000 20 -I.78 .68 1.67 .61 -.47 .68 

Max Diff Set (16) 100 2,000 20 -.64 .05 2.15 .85 1.58 .06 

x       -   1 
o 

c    - 15101 5555 
aTests which fail at the 5% and 95% level of confidence have been circled. 
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The tests which fail at the 5 percent and 95 percent confidence 
levels have been circled.  Overall performance appears satisfactory. For 
example, it was expected that 7 or 8 of I52 independent tests would fail 
at the 5 percent level, and in fact, six tests yielded values below that 
level (.42).  At the 95 percent confidence level, 7 or 8 failures were 
also expected, and fifteen had values above that level (I.79). Although 
the number of failures at this level is somewhat high, the amount is not 
unreasonable, particularly since all tests are not completely independent. 

Several of the tests did not have completely satisfactory results 
when considered individually.  For example, the pairs test failed at the 
95 percent level for both the fourth and seventh sequences.  There is 
slightly less than a 5 percent chance that two out of eight independent 
tests will fail at the 95 percent level.  Similarly, the sum of &aven 
tests failed for both the third and fourth sequences at the 95 nercent 
level. 

In spite of the failures mentioned above, the generator appears to 
yield distributions with satisfactory statistical properties.  For all 
tests, the chi square values based on the samples of 1000 cover the full 
range of expected values. Although In some cases the actual distribution 
may not approximate the theoretical distribution as closely as desired, 
the range and distribution of values seems sufficient for present needs. 

Some additional comments are in order concerning the runs tests, 
particularly the tests for runs above and below the mean.  In evaluating 
the distributions of runs above and below the mean, a loss of two degrees 
of freedom was assumed. This assumption was made because 1) the number 
of runs above the mean must be within one of the number of runs below the 
mean, and 2) the sum (a. + b. )*1 + (a0 + b0)*2 + ... + (a + b )*n, where ' ' ^11/     v 2   2 v n   n'  ' 
a stands for the number of runs of length i above the mean and b  stands 

for the number of runs of length 1 below the mean for 1 ■ l,n, must equal 
1000 . 

However, it was necessary to group runs of length five or more above 
the mean into one cell and similarly to group runs of length five or more 
below the mean 'o avoid having fewer than ten expected observations per 
cell; thus, the formulae indicated above do not literally hold.  Since 
the number of runs above the mean must be within one of the number of runs 
below the mean and since some runs were grouped, we are probably not losing 
a full two degree of freedom, but something less than that.  It can be 
hypothesized that aince we may have used a smaller value for the degrees 
of freedom than actually existed and since the chi square statistics were 
evaluated by dividing by the df, there may have been a slight bias toward 
the high end of the distribution.  This hypothesis is consistent with all 
the actual distributions, each of which had more high values than expected. 
When the same tests were applied to the same sequences of numbers, but in 
blocks of 100,000 and with 24 cells (12 for runs above and 12 for runs 
below), the chi square values were completely acceptable. This result is 
also consistent with the hypothesis, since any bias existing for the 
reasons outlined above is substantially reduced as the number of cells is 
increased. 
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Relationship between Sequences from Different Generators 

The tests previously outlined and described were designed to evaluate 
characteristics of the numbers output by a single generator.  Frequent 
application to problems utilizing simultaneously sequences generated by 
several generators requires evaluation of the relationship between such 
sequences.  The following tests were used for this purpose. 

Correlation. This test involved calculating the correlation between 
all combinations of pairs of twenty multiplicative generators, each having 
a different initial value and multiplier, using the same formula used for 
the autocorrelation tests.  The test was conducted on 10 sets of 1000 
numbers from each generator, yielding 10 correlation coefficients for each 
pair of generators.  The results of these tests are summarized in Table 3* 
Only the correlation coefficients based on the first eight generators are 
reported. The distribution of coefficients yielded a chi square value of 
7.28, which falls at approximately the 25th percentile for 11 degrees of 
freedom. 

Table 3 

DISTRIBUTION OF CORRELATION COEFFICIENTS AMONG 
EIGHT MULTIPLICATIVE GENERATORS 

R P Expected Actual 

-.052 •05 14 12 

-.041 .10 14 12 

-.027 .20 28 26 

-.017 • 50 28 29 

-.008 .40 28 55 

0 •50 28 50 

.008 .60 28 24 

.017 •70 28 50 

.027 .80 28 21 

.091 •90 28 55 

.052 •95 14 11 

- 1.00 19 IT 

Rank order across generators.  This test was designed to evaluate the 
rank of the numbers produced by each generator relative to the numbers 
generated by the other generators. A number was generated for each of the 
8 generators, ranking the 8 numbers from highest to lowest, counting the 
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numbers of occurrences In each of the 8 ordinal positions for each gener- 
ator, and then making a chl square evaluation of the distribution for each 
generator ^8 cells) and over the 8 generators. The null hypothesis of 
Independence would be rejected If some ranks were more frequently asso- 
ciated with some generators than with others. 

Table 4 summarizes the results. The first column Indicates the gen- 
erator and the second column the standard deviation of all chl square 
values for the generator.  This value was calculated by summing the 20 
chi square values computed for that generator and using the standard 

formula, jäiP   - fen  - 1 with n - 140 (20 tests times 7 degrees of freedom). 
The last column Indicates the probabilities of getting an overall chl 
square value as low as that observed. All values were well within an 
acceptable range, although the final sequence gave overall chl square 
that would be exceeded more than 90^ of the time. 

Table 4 

RANK ORDER ACROSS SEQUENCES 

Generator Standard Deviation Probability 

1 -.71 .24 
2 +.63 .75 
5 -.80 .21 
4 -.19 • 43 
5 +.42 .66 
6 +.45 .67 
7 -.87 .19 
8 -1.35 •09 

Uniformity tests.  In 
tests across sequences, uni 
triples. These tests were 
cussed except that the pair 
each of two generators and 
of three generators.  These 
There appears to be no unac 
eight generators.  Similar 
been made, but there seems 
be different from those obt 

addition to the correlation and rank order 
formlty tests were conducted for pairs and 
Identical to the uniformity tests already dis- 
s were formed by selecting one number from 
the triples consisted of a number from each 
tests were also completely satisfactory, 

ceptable relationship between any of the first 
tests among subsequent generators have not 
to be no reason to suggest that results would 
alned with the eight tested. 

The generators described here have been In use at BESRL since mid- 
year I968. 
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The   present   study   reports  on   the  development   and   testing  of   a  pseudo-random number 
generator  which would   be  able   to   rapidly  supply   the   SIMPO-I   entity models with  numbers 
meeting  essential   tests   for   random  qualities.     The   generator  developed  by  BESRL   is  a 
power   residue or multiplicative  generator,   the   simplest   of   the  many generators   based   on 
the   linear  congruential   method.      In  addition  to  an  acceptable   generator,   the  work 
accomplished   resulted   in  a   compilation of  statistical   tests  which  have wider  applica- 
tion   for   evaluating  gererators  used   on  other  computer   systems.     The   tests  are 
described,   and   essential   mathematical   formulations  are   presented. 
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